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Abstract: The purpose of this study is to evaluate layer fusion options for deep learning classi-
fication of optical coherence tomography (OCT) angiography (OCTA) images. A convolutional
neural network (CNN) end-to-end classifier was utilized to classify OCTA images from healthy
control subjects and diabetic patients with no retinopathy (NoDR) and non-proliferative diabetic
retinopathy (NPDR). For each eye, three en-face OCTA images were acquired from the superficial
capillary plexus (SCP), deep capillary plexus (DCP), and choriocapillaris (CC) layers. The per-
formances of the CNN classifier with individual layer inputs and multi-layer fusion architectures,
including early-fusion, intermediate-fusion, and late-fusion, were quantitatively compared. For
individual layer inputs, the superficial OCTA was observed to have the best performance, with
87.25% accuracy, 78.26% sensitivity, and 90.10% specificity, to differentiate control, NoDR, and
NPDR. For multi-layer fusion options, the best option is the intermediate-fusion architecture,
which achieved 92.65% accuracy, 87.01% sensitivity, and 94.37% specificity. To interpret the
deep learning performance, the Gradient-weighted Class Activation Mapping (Grad-CAM) was
utilized to identify spatial characteristics for OCTA classification. Comparative analysis indicates
that the layer data fusion options can affect the performance of deep learning classification, and
the intermediate-fusion approach is optimal for OCTA classification of DR.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Diabetic retinopathy (DR) is a leading cause of vision loss in developed countries [1]. If
it could be diagnosed promptly, more than 95% of DR-related vision loss is preventable
[2], at least the progress can be slowed through appropriate treatment [3–6]. Regular DR
screening is recommended for all patients with diabetes [7]. DR can be characterized by various
retinal vascular abnormalities, such as microaneurysms, retinal edema, hard exudates, retinal
hemorrhages, venous beading, and intraretinal microvascular anomalies [8]. In addition to retinal
vascular markers, choroidal abnormalities have been also reported in DR [9], and the choroidal
blood flow deficit may represent an early pathologic alteration in DR [10].

Given the importance of early DR detection, it is crucial to detect subtle retinal and choroidal
abnormalities. Traditional fundus photography has limitations in terms of sensitivity to reveal
subtle abnormalities [11–14]. Fluorescein angiography (FA) can improve imaging sensitivity
of retinal vascular distortions in DR [15]. However, it requires dye injections which can cause
adverse side effects. In contrast, optical coherence tomography (OCT) angiography (OCTA) is a
non-invasive imaging method that provides volumetric data of the retinal and choroidal layers
[16,17], and has been demonstrated to be more sensitive than FA in detecting subtle abnormalities
[18].
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Quantitative OCTA features have been demonstrated for objective detection and classification
of DR [19–24]. Machine learning and deep learning methods have been employed to classify
DR automatically [25–28]. In principle, deep learning models can extract complex patterns
and subtle features from unimodal or multimodal data. Some studies have combined multiple
modalities to achieve better performance [29,30], while others have utilized fusion strategies
within the same modality [31]. Because different OCTA layers may reflect different aspects of
the ocular condition, it is important to test and optimize layer fusion options in deep learning
detection and classification of eye diseases.

The potential data fusion strategies can be divided into three categories: early, intermediate,
and late-fusion [32,33]. The early-fusion combines information at the raw data level before any
processing takes place. Ryu et al. have utilized this approach by concatenating the superficial
capillary plexus (SCP), deep capillary plexus (DCP), and full thickness retina layer of OCTA [31].
The intermediate-fusion combines information from each layer after feature extraction before
they are fed into the final classification layer. The late-fusion combines layer information at the
decision stage, after feature extraction and classification with individual layers. The late-fusion
techniques have been inspired by ensemble learning approaches in a variety of ways [34].

Given the various data fusion strategies, this study aims to assess the effects of early,
intermediate, and late-fusion options on OCTA classification of DR. In addition to retinal layers,
additional choriocapillaris (CC) OCTA may help improving DR classification performance,
due to DR caused choroidal abnormalities [9,10]. Thus, this study evaluated multi-layer fusion
strategies in OCTA using en-face images from SCP, DCP, and CC for deep learning classification
of DR. To assist with the interpretation of the classification performance, class activation maps
were used to identify the most significant regions in each OCTA layer.

2. Methods

A convolutional neural network (CNN) classifier was utilized in this study. Early-fusion,
intermediate-fusion, and late-fusion strategies were included to evaluate the effect of multi-layer
approaches on the performance of DR classification. The following section 2.1 describes data
acquisition. Section 2.2 delves into the CNN architecture and implementation. Section 2.3
discusses the classification using individual OCTA layers. Section 2.4 focuses on the combination
of multiple OCTA layers via various fusion structures. Section 2.5 defines the evaluation metrics
of deep learning OCTA classification of DR. Finally, section 2.6 describes class activation maps
to visualize the important regions for DR classification.

2.1. Data acquisition

In this study, OCTA volumetric data from 136 subjects were acquired, including 46 healthy
control eyes, 26 eyes of diabetic patients with no DR (NoDR), and 64 eyes of patients with
non-proliferative DR (NPDR). These datasets were obtained from University of Illinois Chicago
(UIC) eye clinic and were acquired using ANGIOVUE spectral domain (SD) OCTA systems
(Optovue, Fremont, CA). These OCTA images were centered on the fovea and covered a 6× 6
mm2 area. As illustrated in Fig. 1, for each eye, three en-face images from the SCP, DCP, and
CC layers were generated. This study was conducted in accordance with the ethical standards
outlined in the Declaration of Helsinki and was approved by the institutional review board of
UIC.

2.2. CNN classifier and implementation details

The image minimal and maximal intensities were normalized before being fed to the model.
The base architecture chosen for this study was EfficientNetV2L [35]. As shown in Fig. 2,
the CNN-based end-to-end classifier for DR classification can be divided into two parts: the
first part extracts features from the OCTA images, and the second part uses these features to



Research Article Vol. 14, No. 9 / 1 Sep 2023 / Biomedical Optics Express 4715

Fig. 1. (A) Representative OCTA images of SCP (A1), DCP (A2), and CC (A3) of a healthy
control subject. (B) Representative OCTA images of SCP (B1), DCP (B2), and CC (B3) of
a NoDR subject. (C) Representative OCTA images of SCP (C1), DCP (C2), and CC (C3) of
an NPDR subject.

classify the images into the appropriate groups. The transfer learning technique was employed to
compensate for the limited dataset size of available OCTA images [36]. Transfer learning is a
training approach that uses some weights from a pretrained CNN to retrain specific layers of the
network [37]. In order to avoid overfitting and enhance the generalizability, data augmentation
operations, including random rotation, brightness change, horizontal and vertical flip, zooming,
and scaling, were applied. The training was done for 200 epochs, with a learning rate of 0.00001,
optimizer of Adam, loss function of categorical cross entropy, batch size of 32, and a callback
function of early stopping. Because of the limited dataset size, the five-fold cross validation
was performed. The network was trained using 80 percent of the images in each fold, and the
remaining 20 percent of the images were utilized as validation.

   
 

Fig. 2. CNN-based end-to-end classifier for DR classification

For all experiments except the late-fusion, the pretrained weights from the ImageNet dataset
were transferred to the EfficientNetV2L base model [38]. In the late-fusion experiment, the
pretrained weights from the individual OCTA layer models were utilized. The model was
implemented using Python v3.8 software with the Keras 2.9.0 and TensorFlow 2.9.1 open-source
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platform backend. Training was performed on a Windows 10 computer with an NVIDIA RTX
6000 Ti graphics processing unit.

2.3. CNN classifier for individual OCTA layer architectures

The ability of the CNN classifier to classify OCTA images into different groups was first assessed
by training the model separately on each of the three OCTA layers. This allowed us to determine
the most informative layer for DR classification and to compare the performance of the model
on different layer fusion options. Figure 3 illustrates individual layer inputs (Fig. 3(A)) and
multi-layer fusion (Fig. 3(B)) options. A five-fold cross-validation approach was used in the
training of the model, where the data was divided into five equal sets and the training and
evaluation of the model was carried out on each set. This allowed us to evaluate the performance
of the model on a diverse set of images and to estimate the generalizability of the model to new
data. The individual OCTA layer architecture is defined as SCP-only, DCP-only, or CC-only
based on the input layer used. After training the model on individual layers, the combination of
the layers in different approach to check the classification performance was examined. Three
different fusion architectures: early-fusion, intermediate-fusion, and late-fusion were considered
in this study.

Fig. 3. (A) DR classification with SCP-only (A1), DCP-only (A2), and CC-only (A3)
OCTA. (B) DR classification with early-fusion (B1), intermediate-fusion (B2), late-fusion
(B3) architectures.

2.4. Early-fusion, intermediate-fusion, and late-fusion

2.4.1. Early-fusion

Early-fusion is a data fusion strategy that combines the raw data from different sources at the
input level of the model [32]. In this study, early-fusion involves concatenating the raw data from
the SCP, DCP, and CC layers of OCTA and presenting them to the model as three separate input
channels (Fig. 3(B1)). By combining the raw data from different layers at the input level, the
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model can learn to integrate and exploit the complementary information from the different layers
to improve the classification performance.

2.4.2. Intermediate-fusion

Intermediate-fusion is a data fusion strategy that combines the processed data from different
sources after some initial processing has been applied to the raw data [32]. In this study,
intermediate-fusion combines features derived from the SCP, DCP, and CC layers for following
processing and classification (Fig. 3(B2)). Each layer OCTA is first processed separately through
a feature extraction module. The outputs of the feature extraction modules are then concatenated
and fed into a convolutional layer, which further processes the data and extracts higher-level
features. The output of the convolutional layer is then passed to the classification module to
produce the final prediction.

2.4.3. Late-fusion

Late-fusion is a data fusion strategy to combine the different sources after all processing has been
completed [32]. In this study, late-fusion involves applying this approach to the data from the
SCP, DCP, and CC layers of OCTA. As depicted in Fig. 3(B3), this involves extracting features
and performing classification separately for each layer, using the fully processed data from each
input. The outputs of the classification modules for three layers are then combined using a global
averaging layer. The final prediction is produced based on the combined outputs of all three
layers.

Initially, the pretrained weights from the separate individual OCTA layer models (Fig. 3(A)),
were employed, instead of using pretrained weights of ImageNet data set to the EfficientNetV2L
base model [38]. This strategy was employed since the model was unable to converge. Due to
the size of the model in late-fusion and the number of parameters to be trained, the model cannot
be properly trained with a small dataset unless overfitting happens. To avoid this problem, the
best starting point possible was required to initialize the parameters with the pretrained weights
of each individual model.

2.5. Evaluation metrics of deep learning performance

Several metrics were employed in this study to evaluate the performance of the deep learning
models and to quantify their accuracy and effectiveness. One common metric for evaluating the
performance of classification models is the receiver operating characteristic (ROC) curve, which
plots the true positive rate (sensitivity) against the false positive rate (1-specificity) at various
classification thresholds. The area under the curve (AUC) of the ROC curve is another useful
metric, as it measures the entire area underneath the ROC curve. A model with an AUC of 1 is a
perfect classifier, while a model with an AUC of 0.5 is no better than random chance.

In addition to ROC and AUC, other performance metrics, including accuracy (ACC), sensitivity
(SE), and specificity (SP), were also calculated. Sensitivity is a measure of the proportion of true
positives that are correctly identified. Specificity is a measure of the proportion of true negatives
that are correctly identified. Accuracy is a measure of the overall performance of the model.
These metrics are defined as:

Sensitivity = TP
TP+FN (1)

Specificity = TN
TN+FP (2)

Accuracy = TP+TN
TP+FP+TN+FN (3)

where TP, TN, FP, and FN represent the number of true positives, true negatives, false positives,
and false negatives, respectively.
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2.6. Class activation map

The Gradient-weighted Class Activation Mapping (Grad-CAM) [39] was utilized to identify
the OCTA regions that were most important for the classification decision. Specifically, the
input image was fed into the pre-trained CNN and the gradient information flowing into the final
convolutional layer was used to generate a class activation map. The class activation map was
then overlaid onto the input image to create a heatmap visualization, which highlights the image
regions that were most influential for the classification decision.

3. Results

The cross-validation performances for both individual layer inputs and multi-layer fusion
architectures are summarized in Fig. 4 and Table 1. For individual layer inputs, the SCP-only
provided the best performance, with the highest accuracy (87.249%), sensitivity (78.264%), and
specificity (90.104%). For multi-layer fusion architectures, the intermediate-fusion architecture
showed the best performance. The early-fusion showed a slightly lower performance compared
to the SCP-only architecture. The late-fusion architecture had slightly worse results compared to
intermediate-fusion, but still outperformed all other options.

Fig. 4. Confusion matrices of SCP-only (A), DCP-only (B), CC-only (C), early-fusion (D),
intermediate-fusion (E), and late-fusion (F) architectures.

Figure 5 illustrates ROC curves of different groups in different architectures. The overall AUC
for SCP-only, DCP-only, CC-only, early-fusion, intermediate-fusion, and late-fusion are 0.894,
0.857, 0.851, 0.875, 0.916, and 0.915, respectively. Among all architectures, the intermediate-
fusion architecture has the highest AUC value, which is consistent with the findings in Table 1.
For individual OCTA layer inputs, the SCP-only and DCP-only obtained higher AUC values of
the NPDR group than the control and NoDR groups, while the CC-only achieved a higher AUC
value of the control group than the NoDR and NPDR groups. For multi-layer fusion architectures,
the intermediate-fusion and the early-fusion obtained higher AUC values of the NPDR group
than the control and NoDR groups, whereas the late-fusion achieved a higher AUC value of the
control group than the NoDR and NPDR groups. For all individual OCTA layer and multi-layer
fusion architectures, the NoDR group attained a lower AUC value than the control and NPDR
groups.
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Table 1. Comparative performance illustration of OCTA layer fusion options

Architectures Class Metrics

Acc (%) Se (%) Sp (%) AUC

SCP-only

Control 86.772 87.111 86.588 0.8971

NoDR 88.228 65.333 93.546 0.8752

NPDR 86.746 82.348 90.179 0.9121

Average 87.249 78.264 90.104 0.8948

DCP-only

Control 82.381 83.111 82.384 0.8449

NoDR 88.228 68.667 92.554 0.8444

NPDR 88.228 80.919 94.643 0.8839

Average 86.279 77.566 89.860 0.8577

CC-only

Control 87.566 72.222 95.607 0.9179

NoDR 85.291 61.333 90.775 0.7850

NPDR 83.069 88.951 77.679 0.8522

Average 85.309 74.169 88.020 0.8517

Early-fusion

Control 86.085 86.889 85.587 0.9019

NoDR 86.772 57.333 93.589 0.7958

NPDR 87.460 83.716 90.179 0.9282

Average 86.772 75.980 89.785 0.8753

Intermediate-fusion

Control 92.646 91.556 93.326 0.9220

NoDR 92.672 77.333 96.399 0.8776

NPDR 92.619 92.138 93.393 0.9494

Average 92.646 87.009 94.373 0.9163

Late-fusion

Control 91.217 91.333 91.163 0.9442

NoDR 88.228 65.333 93.676 0.8598

NPDR 91.138 88.951 93.393 0.9431

Average 90.194 81.873 92.744 0.9157

Figure 6 shows representative images to demonstrate the class activation maps of an NPDR
OCTA. For individual layer inputs, the SCP-only (Fig. 6(A1)) and the DCP-only (Fig. 6(A2))
models were observed to involve the foveal avascular zone (FAZ) and surrounding capillary
dropouts for the classification. The CC-only model (Fig. 6(A3)) also revealed dropout areas with
reduced blood flow and vascular density.

By comparing the intermediate-fusion (Fig. 6(C)) and late-fusion (Fig. 6(D)), it was observed
that both fusion strategies preserve the features learned from the separate OCTA layers, and the
layer information is combined to bolster the classification performance. Whereas the early-fusion
(Fig. 6(B)) model cannot completely discern the specific layer information for DR classification,
thereby having less consistent results. Specifically, the DCP layer (Fig. 6(B2)) in the early-fusion
model failed to focus on the FAZ and surrounding areas, unlike the intermediate-fusion and
late-fusion models.
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Fig. 5. ROC curves of SCP-only (A), DCP-only (B), CC-only (C), early-fusion (D),
intermediate-fusion (E), and late-fusion (F) architectures.

Fig. 6. Representative Grad-CAM results for an NPDR patient to highlight the regions
useful for deep learning classification in individual layer inputs (A), early-fusion (B),
intermediate-fusion (C), and late-fusion (D).
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4. Discussion

In this study, the performances of individual OCTA layer inputs and multi-layer fusion archi-
tectures, including early-fusion, intermediate-fusion, and late-fusion were evaluated for deep
learning classification of DR. For individual OCTA layer inputs, the SCP-only architecture
achieved the best performance over the DCP-only and CC-only architectures. For the multi-layer
architectures, the intermediate-fusion architecture had the best performance over the late-fusion
and early-fusion architectures.

We speculated that combined information of OCTA layers would help robust performance of
deep learning classification of DR. However, this study indicates that the early-fusion approach
did not improve the performance compared to the SCP-only architecture. There are several
possibilities to explain the observation. First, the early-fusion approach may not be able to
identify correlations between the OCTA layers. In fact, by combining the raw data directly, the
deep learning model may not be able to discriminate different layers and then their pathological
correlations [32]. In other words, the pathological features of these layers may only become
apparent when the model is able to consider them at a more abstract level, i.e., deeper in the
CNN. Therefore, with the early-fusion approach, it may not be possible for the CNN to perform
optimally. Ryu et al. utilized a full thickness retina layer as a third input and observed slightly
improved accuracy compared to a single layer input [31]. At the raw data level, the full thickness
retina layer demonstrates a stronger correlation with SCP and DCP than CC. Second, the intensity
values and spatial patterns of input images may be different, which can make it difficult for the
model to optimize its weights during the training process [40]. The CC layer OCTA is brighter
than the other two layers. Therefore, if the brightness values are very different, it may be difficult
for the model to optimize the weights of the first convolutional layer, which is responsible for
merging these layers. For this study, we have normalized the image brightness, according to
the range of minimal and maximal intensities, to minimize the effect of brightness variance.
However, the signal to noise ratio and spatial pattern distribution of individual layers might be
still different, and then can negatively impact the early-fusion performance.

Unlike the early-fusion approach, the intermediate-fusion approach allows the model to first
extract features from each OCTA layer separately. This separation allows the model to consider
the unique characteristics of each layer and identify patterns and relationships that might not
be visible when all layers are combined at an early stage. The extracted features on each layer
are then concatenated together and passed to the convolutional and dense layers of the model.
This architecture enables the fusion at an appropriate level of abstraction and understand how the
different layers are related to each other. As a result, this whole process enables the model to
consider the higher representation of each layer and find correlations between them (Fig. 3(B2)).

In contrast, the late-fusion approach fuses the OCTA layers at the last stage, which may
not allow the model to fully take advantage of the correlations among the layers. As a result,
the performance of the model is slightly worse than intermediate-fusion, but still better than
early-fusion and individual layer inputs. Comparing the late-fusion and early-fusion, Heisler et
al. demonstrated that combining superficial and deep plexus enface images of OCTA and deep
plexus enface images of OCT at the end stage provides higher performance than combining at
the early stage using standard CNN [41].

Deep learning is widely known for its exceptional performance in various classification tasks,
but the lack of interpretability due to the automated feature learning and extraction process
has been a significant challenge. To address this issue, various methods have been proposed,
among which the Grad-CAM approach has gained popularity [39]. In Fig. 6 we demonstrate the
region of interest for an NPDR patient in different models. Based on these qualitative results, the
intermediate-fusion (Fig. 6(C)) and late-fusion (Fig. 6(D)) are able to preserve the features learned
from individual OCTA layer inputs (Fig. 6(A1), (A2), and (A3)), resulting in high and comparable
classification performance. In contrast, the early-fusion model failed to focus on important
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regions, leading to lower classification performance. Specifically, the early-fusion model missed
the FAZ area in the DCP layer (Fig. 6(B2)), whereas the intermediate-fusion and late-fusion
models were able to capture this important feature (Fig. 6(C2), and (D2)). These findings suggest
that the intermediate-fusion and late-fusion models can complement the information learned
from separate OCTA layers, resulting in improved performance compared to the early-fusion
model.

5. Conclusion

Comparative analysis indicates that the deep learning performance can be significantly affected
by the layer fusion options. For individual OCTA layer inputs, the SCP-only model showed the
best performance for DR classification. For multi-layer fusion options, the intermediate-fusion
achieved the best performance. The presented Grad-CAMs showed that the intermediate-fusion
and late-fusion can preserve the features learned from individual OCTA layers to bolster the
classification performance. On the contrary, the early-fusion model cannot effectively identify
layer correlations for robust classification.
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